Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions

نویسندگان

چکیده

We consider a homoclinic orbit to saddle fixed point of an arbitrary \begin{document}$ C^\infty $\end{document} map id="M2">\begin{document}$ f on id="M3">\begin{document}$ \mathbb{R}^2 and study the phenomenon that id="M4">\begin{document}$ has infinite family asymptotically stable, single-round periodic solutions. From classical theory this requires id="M5">\begin{document}$ have tangency. We show it is also necessary for id="M6">\begin{document}$ satisfy 'global resonance' condition eigenvalues associated with point, id="M7">\begin{document}$ \lambda id="M8">\begin{document}$ \sigma $\end{document}, id="M9">\begin{document}$ |\lambda \sigma| = 1 $\end{document}. The codimension-three in case id="M10">\begin{document}$ -1 but codimension-four id="M11">\begin{document}$ because here coefficients leading-order resonance terms id="M12">\begin{document}$ at must add zero. identify conditions sufficient occur, illustrate results abstract maps, numerically computed basins attraction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Coexisting Sinks from Degenerate Homoclinic Tangencies

The evolution of a horseshoe is an interesting and important phenomenon in Dynamical Systems as it represents a change from a nonchaotic state to a state of chaos. As we are interested in determining how this transition takes place, we are studying certain families of diffeomorphisms. We restrict our attention to certain one-parameter families {Ft} of diffeomorphisms in two dimensions. It is as...

متن کامل

Existence of Infinitely Many Elliptic Periodic Orbits in Four-Dimensional Symplectic Maps with a Homoclinic Tangency

We study the problem of coexistence of a countable number of periodic orbits of different topological types (saddles, saddle–centers, and elliptic) in the case of four-dimensional symplectic diffeomorphisms with a homoclinic trajectory to a saddle–focus fixed point.

متن کامل

Infinitely Many Periodic Solutions of Nonlinear Wave Equations on S

The existence of time periodic solutions of nonlinear wave equations utt −∆nu + ` n− 1 2 ́2 u = g(u)− f(t, x) on n-dimensional spheres is considered. The corresponding functional of the equation is studied by the convexity in suitable subspaces, minimax arguments for almost symmetric functional, comparison principles and Morse theory. The existence of infinitely many time periodic solutions is o...

متن کامل

Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian

We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2021010